Ecstatic Birth – Hormones in Birth

Dr. Sarah J. Buckley, MD

This article has been previously published in Mothering Magazine, issue 111, March-April 2002, and also in Byron Child, issue 5, March 2003

Giving birth in ecstasy: This is our birthright and our body’s intent. Mother Nature, in her wisdom, prescribes birthing hormones that take us outside (ec) our usual state (stasis), so that we can be transformed on every level as we enter motherhood.

This exquisite hormonal orchestration unfolds optimally when birth is undisturbed, enhancing safety for both mother and baby. Science is also increasingly discovering what we realise as mothers – that our way of birth affects us life-long, both mother and baby, and that an ecstatic birth, a birth that takes us beyond our Self, is the gift of a life-time.

Four major hormonal systems are active during labor and birth. These involve oxytocin, the hormone of love; endorphins, hormones of pleasure and transcendence; epinephrine and norepinephrine, hormones of excitement; and prolactin, the mothering hormone. These systems are common to all mammals and originate in our mammalian or middle brain, also known as the limbic system. For birth to proceed optimally, this part of the brain must take precedence over the neocortex, or rational brain. This shift can be helped by an atmosphere of quiet and privacy, with, for example, dim lighting and little conversation, and no expectation of rationality from the laboring woman. Under such conditions a woman intuitively will choose the movements, sounds, breathing, and positions that will birth her baby most easily. This is her genetic and hormonal blueprint.

All of these systems are adversely affected by current birth practices. Hospital environments and routines are not conducive to the shift in consciousness that giving birth naturally requires. A woman’s hormonal physiology is further disturbed by practices such as induction, the use of pain killers and epidurals, caesarean surgery, and separation of mother and baby after birth.

HORMONES IN BIRTH
Oxytocin
Perhaps the best-known birth hormone is oxytocin, the hormone of love, which is secreted during sexual activity, male and female orgasm, birth, and breastfeeding. Oxytocin engenders feelings of love and altruism; as Michel Odent says, “Whatever the facet of Love we consider, oxytocin is involved.”(1)

Oxytocin is made in the hypothalamus, deep in our brains, and stored in the posterior pituitary the “master gland”, from where it is released in pulses. It is a crucial hormone in reproduction and mediates what have been called the ejection reflexes: the sperm ejection reflex with male orgasm (and the corresponding sperm introjection reflex with female orgasm); the fetal ejection reflex at birth (a phrase coined by Odent for the powerful contractions at the end of an undisturbed labor, which birth the baby quickly and easily)(2); and, postpartum, the placental ejection reflex and the milk ejection or let-down reflex in breastfeeding.

As well as reaching peak levels in each of these situations, oxytocin is secreted in large amounts in pregnancy, when it acts to enhance nutrient absorption, reduce stress, and conserve energy by making us more sleepy. (3) Oxytocin also causes the rhythmic uterine contractions of labor, and levels peak at birth through stimulation of stretch receptors in a woman’s lower vagina as the baby descends. (4) The high levels continue after birth, culminating with the birth of the placenta, and then gradually subside. (5)
The baby also has been producing oxytocin during labor, perhaps even initiating labor;(6) so, in the minutes after birth, both mother and baby are bathed in an ecstatic cocktail of hormones. At this time ongoing oxytocin production is enhanced by skin-to-skin and eye-to-eye contact and by the baby’s first suckling. Good levels of oxytocin will also protect against postpartum hemorrhage by ensuring good uterine contractions. (7)

In breastfeeding, oxytocin mediates the let-down reflex and is released in pulses as the baby suckles. During the months and years of lactation, oxytocin continues to act to keep the mother relaxed and well nourished. One researcher calls it “a very efficient anti-stress situation which prevents a lot of disease later on.” In her study, mothers who breastfed for more than seven weeks were calmer, when their babies were six months old, than mothers who did not breastfeed. (8)

Outside its role in reproduction, oxytocin is secreted in other situations of love and altruism, for example, sharing a meal. (9) Researchers have implicated malfunctions of the oxytocin system in conditions such as schizophrenia (10), autism (11), cardiovascular disease (12) and drug dependency (13), and have suggested that oxytocin may mediate the antidepressant effect of drugs such as Prozac. (14)

Beta-endorphin
As a naturally occurring opiate, beta-endorphin has properties similar to meperidine (pethidine, Demerol), morphine, and heroin, and has been shown to work on the same receptors of the brain. Like oxytocin, beta-endorphin is secreted from the pituitary gland, and high levels are present during sex, pregnancy, birth, and breastfeeding. Beta-endorphin is also a stress hormone, released under conditions of duress and pain, when it acts as an analgesic and, like other stress hormones, suppresses the immune system. This effect may be important in preventing a pregnant mother’s immune system from acting against her baby, whose genetic material is foreign to hers.

Like the addictive opiates, beta-endorphin induces feelings of pleasure, euphoria, and dependency or, with a partner, mutual dependency. Beta-endorphin levels are high in pregnancy and increase throughout labor, (15) when levels of beta-endorphin and corticotrophin (another stress hormone) reach those found in male endurance athletes during maximal exercise on a treadmill. (16) Such high levels help the laboring woman to transmute pain and enter the altered state of consciousness that characterizes an undisturbed birth.

Beta-endorphin has complex and incompletely understood relationships with other hormonal systems. (17) In labor, high levels will inhibit oxytocin release. It makes sense that when pain or stress levels are very high, contractions will slow, thus “rationing labour according to both physiological and psychological stress.”(18) Beta-endorphin also facilitates the release of prolactin during labor, (19) which prepares the mother’s breasts for lactation and also aids in the final stages of lung maturation for the baby. (20)
Beta-endorphin is also important in breastfeeding. Levels peak in the mother at 20 minutes, (21) and beta-endorphin is also present in breast milk, (22) inducing a pleasurable mutual dependency for both mother and baby in their ongoing relationship.

Fight-or-Flight Hormones
The hormones epinephrine and norepinephrine (adrenaline and noradrenaline) are also known as the fight-or-flight hormones, or, collectively, as catecholamines (CAs). They are secreted from the adrenal gland, above the kidney, in response to stresses such as fright, anxiety, hunger or cold, as well as excitement, when they activate the sympathetic nervous system for fight or flight.

In the first stage of labor, high CA levels inhibit oxytocin production, therefore slowing or inhibiting labor. CAs also act to reduce blood flow to the uterus and placenta, and therefore to the baby. This makes sense for mammals birthing in the wild, where the presence of danger would activate this fight or flight response, inhibiting labor and diverting blood to the major muscle groups so that the mother can flee to safety. In humans, high levels of CAs have been associated with longer labor and adverse fetal heart rate patterns (an indication of stress to the baby). (23)

After an undisturbed labor, however, when the moment of birth is imminent, these hormones act in a different way. There is a sudden increase in CA levels, especially noradrenaline, which activates the fetal ejection reflex. The mother experiences a sudden rush of energy; she will be upright and alert, with a dry mouth and shallow breathing and perhaps the urge to grasp something. She may express fear, anger, or excitement, and the CA rush will cause several very strong contractions, which will birth the baby quickly and easily.

Some birth attendants have made good use of this reflex when a woman is having difficulties in the second stage of labor. For example, one anthropologist working with an indigenous Canadian tribe recorded that when a woman was having difficulty in birth, the young people of the village would gather together to help. They would suddenly and unexpectedly shout out close to her, with the shock triggering her fetal ejection reflex and a quick birth (24).

After the birth, the mother’s CA levels drop steeply, and she may feel shaky or cold as a consequence. A warm atmosphere is important, as if the mother is not helped to warm up, the ongoing cold stress will keep her CA levels high, inhibiting her natural oxytocin release and therefore increasing her risk of postpartum hemorrhage. (25)

Noradrenaline, as part of the ecstatic cocktail, is also implicated in instinctive mothering behavior. Mice bred to be deficient in noradrenaline will not care for their young after birth unless noradrenaline is injected back into their system (26).

For the baby also, birth is an exciting and stressful event, reflected in high CA levels (27). These assist the baby during birth by protecting against the effects of hypoxia (lack of oxygen) and subsequent acidosis. High CA levels at birth ensure that the baby is wide-eyed and alert at first contact with the mother. The baby’s CA levels also drop rapidly after an undisturbed birth, being soothed by contact with the mother.

Prolactin
Known as the mothering hormone, prolactin is the major hormone of breast milk synthesis and breastfeeding. Traditionally it has been thought to produce aggressively protective behavior (the “mother tiger” effect) in lactating females.(28) Levels of prolactin increase in pregnancy, although milk production is inhibited hormonally until the placenta is delivered. Levels further increase in labor and peak at birth.
Prolactin is also a hormone of submission or surrender–in primate troops, the dominant male has the lowest prolactin level–and produces some degree of anxiety. In the breastfeeding relationship these effects activate the mother’s vigilance and help her to put her baby’s needs first.(29) The baby also produces prolactin in pregnancy, and high levels are found in amniotic fluid, possibly of uterine or placental origin.(30) The function of prolactin in the baby is unknown.

UNDISTURBED BIRTH
Undisturbed birth is exceedingly rare in our culture, even in birth centers and home births.
Two factors that disturb birth in all mammals are firstly being in an unfamiliar place and secondly the presence of an observer. Feelings of safety and privacy thus seem to be fundamental. Yet the entire system of Western obstetrics is devoted to observing pregnant and birthing women, by both people and machines, and when birth isn’t going smoothly, obstetricians respond with yet more intense observation. It is indeed amazing that any woman can give birth under such conditions.
Some writers have observed that, for a woman, having a baby has a lot of parallels with making a baby: same hormones, same parts of the body, same sounds, and the same needs for feelings of safety and privacy. How would it be to attempt to make love in the conditions under which we expect women to give birth?

IMPACT OF DRUGS AND PROCEDURES
Induction and Augmentation
In Australia, approximately 20 percent of women have induced labor, and another 20 percent have an augmentation–stimulation or speeding up of labor–with synthetic oxytocin (syntocinon, pitocin) (31). In the U.S., these rates are 19.8 percent and 17.9 percent, (32) adding up in both countries to around 40 percent of birthing women being administered synthetic oxytocin by IV during labor.

Synthetic oxytocin administered in labor does not act like the body’s own oxytocin. First, syntocinon-induced contractions are different from natural contractions, and these differences can cause a reduced blood flow to the baby. For example, waves can occur almost on top of each other when too high a dose of synthetic oxytocin is given, and it also causes the resting tone of the uterus to increase (33).

Second, oxytocin, synthetic or not, cannot cross from the body to the brain through the blood-brain barrier. This means that syntocinon, introduced into the body by injection or drip, does not act as the hormone of love. However, it does provide the hormonal system with negative feedback—that is, oxytocin receptors in the laboring woman’s body detect high levels of oxytocin and signal the brain to reduce production. We know that women with syntocinon infusions are at higher risk of bleeding after the birth, because their own oxytocin production has been shut down. But we do not know the psychological effects of giving birth without the peak levels of oxytocin that nature prescribes for all mammalian species.

As for the baby, “Many experts believe that through participating in this initiation of his own birth, the fetus may be training himself to secrete his own love hormone.”(34). Michel Odent speaks passionately about our society’s deficits in our capacity to love self and others, and he traces these problems back to the time around birth, particularly to interference with the oxytocin system.

Opiate Painkillers
The most commonly used drug in Australian labor wards today is pethidine (meperidine, Demerol). In one state, 34 percent of laboring women in 1998 were given this drug.(35) In the U.S., several opiate-like drugs have been traditionally used in labor, including meperidine nalbuphine (Nubain), butorphanol (Stadol), alphaprodine (Nisentil), hydromorphone (Dilaudid), and fentanyl citrate (Sublimaze). The use of simple opiates in the labor room has declined in recent years, with many women now opting for epidurals, which may also contain these drugs (see below). (36) As with oxytocin, use of opiate drugs will reduce a woman’s own hormone production, (37) which may be helpful if levels are excessive and inhibiting labor. The use of pethidine, however, has been shown to slow labor, more so with higher doses (38).

Again we must ask: What are the psychological effects for mother and baby of laboring and birthing without peak levels of these hormones of pleasure and co-dependency? Some researchers believe that endorphins are the reward we get for performing reproductive functions such as mating and birthing; that is, the endorphin fix keeps us having sex and having babies (39). It is interesting to note that most countries that have adopted Western obstetrics, which prizes drugs and interventions in birth above pleasure and empowerment, have experienced steeply declining birth rates in recent years.

Of greater concern is a study that looked at the birth records of 200 opiate addicts born in Stockholm from 1945 to 1966 and compared them with the birth records of their non-addicted siblings. When the mothers had received opiates, barbiturates, and/or nitrous oxide gas during labor, especially in multiple doses, the offspring were more likely to become drug addicted. For example, when a mother received three doses of opiates, her child was 4.7 times more likely to become addicted to opiate drugs in adulthood (40).

This study was recently replicated with a U.S. population, with very similar results (41). The authors of the first study suggest an imprinting mechanism, but I wonder whether it may be a matter of ecstasy–if we don’t get it at birth, as we expect, we look for it later in life through drugs. Perhaps this also explains the popularity (and the name) of the drug Ecstasy.

Animal studies suggest a further possibility. It seems that drugs administered chronically in late pregnancy can cause effects in brain structure and function (eg chemical and hormonal imbalance) in offspring that may not be obvious until young adulthood (42–45). Whether such effects apply to human babies who are exposed for shorter periods around the time of birth is not known; but one researcher warns, “During this prenatal period of neuronal [brain cell] multiplication, migration and interconnection, the brain is most vulnerable to irreversible damage.”(46)

Epidural Drugs
Epidural drugs are administered over several hours via a tube into the space around the spinal cord. Such drugs include local anaesthetics (all cocaine derivatives, eg. bupivicaine/marcaine), more recently combined with low-dose opiates. Spinal pain relief involves a single dose of the same drugs injected through the coverings of the spinal cord, and is usually short acting unless given as a combined spinal-epidural (CSE).

Dr Sarah J Buckley MD is a family physician and mother of four children, and an internationally-acclaimed writer on pregnancy, birth and parenting. Her website, www.sarahjbuckley.com is dedicated to Gentle choices in pregnancy, birth and parenting